

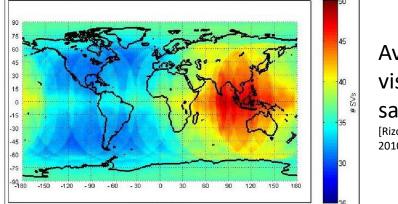
## **How Secure are Our Satellites?**

**Richard Jaenicke** Director, Marketing Safety & Security-Critical Products





Do you agree or disagree with these statements?


- Most satellites in operation are older, long before software-defined architectures, making them less vulnerable to hacking.
- □ If GPS satellites were compromised, it's not that big of a problem because we could get by using paper maps or digital map databases without real-time GPS input.
- Data sent to and from a satellite is secure because most satellites encrypt communications.
- If a hacker does get inside a satellite, then they can pretty much do what ever they want, from covertly altering the data to disabling the satellite.

# Modern navigation includes

**GPS for Navigation** 

- Map database
- Real-time location ← GPS
- Real-time traffic
- Real-time weather (flight sys)





Average # of visible GNSS satellites [Rizos, Higgins, Johnston 2010]

#### Global Navigation Satellite Systems (GNSS):

GPS (US), Glonass (Russia), Galileo (EU), BeiDou/Compass (China) *regional:* IRNSS (India), QZSS (Japan)

#### Satellite-Based Augmentation System (SBAS)

WAAS (US-FAA), WAGE (US-DoD), EGNOS (EU), GAGAN (India), MSAS (Japan), SDCM (Russia) *Commercial:* Starfire, Starfix/OmniSTAR, Atlas



## We Depend on Satellites



# GPS

### **Precise Timing**

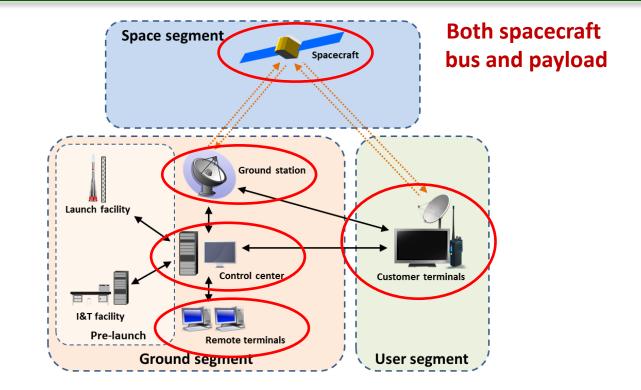
- Navigation
- Financial
- Power Grids
- Internet

## Comms



- TV Uplinks & Subscriptions
- Voice for Airborne & Remote Areas
- Agriculture
  Public Safety
  Transportation
  - Transportation

Weather


# Imaging



- Agriculture
- Military
- Intelligence
- Arms Control

## **Satellite Vulnerability**





#### © 2020 Green Hills Software

## **Satellite Attack Vectors**

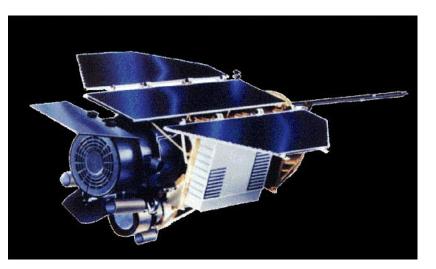
## Physical attack

- Anti-satellite missile
- "Inspector" satellite
- Electro-Magnetic (EM) attack
  - Jamming, EM pulse, etc.
- **Cyber attack** 
  - from ground station
  - fake ground station
  - another satellite
- Supply chain





## Long History of Satellite Hacking




#### One of the earliest:

- □ 1998 blinding of US-German ROSAT
  - Intrusion at Goddard by Russian hackers

More recently:

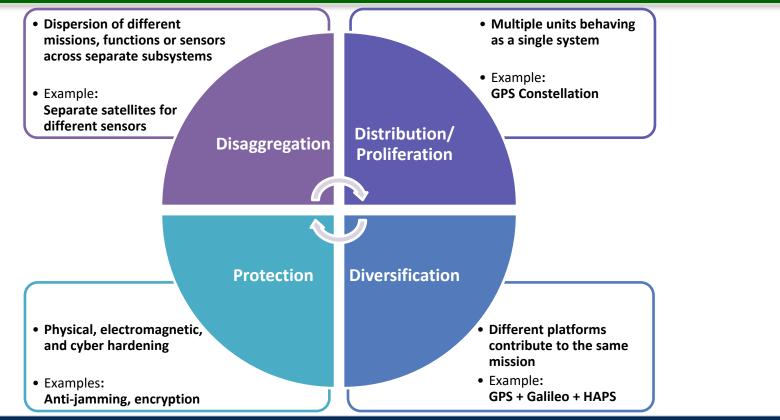
- **2014** hack of a weather satellite server
  - Chinese attack on NOAA server caused a 2-day outage



## ROSAT Satellite X-ray Telescope

## **Security Responses**

#### Physical


- Maneuverability, active defense
- **EM** 
  - Anti-jamming, EM hardening
- **Cyber** 
  - Real-time anomaly detection
  - apply general InfoSec (ISO 7498-2)
- Too hard to ensure survivability, so change to resilience





## **Achieving Satellite Resilience**

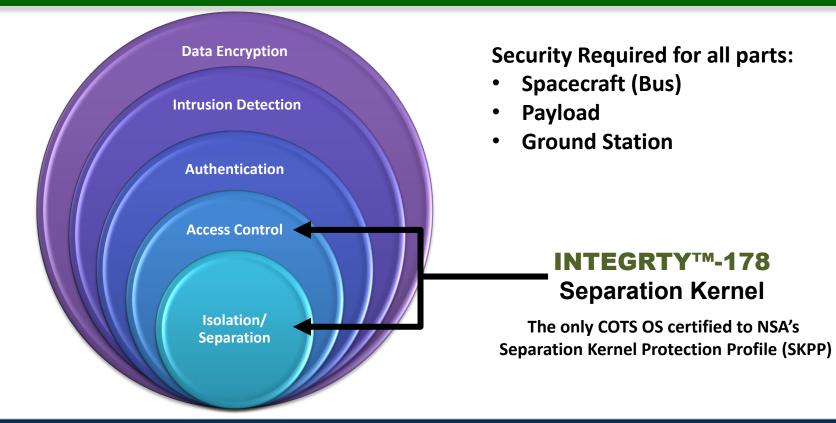




## **Trends from Resilience Goal**



| Large, multi-function satellites         | →        | Smaller, less expensive satellites,<br>deployed in clusters |
|------------------------------------------|----------|-------------------------------------------------------------|
| Complex proprietary architectures        | →        | Rapid technology insertion                                  |
| Built for 15-20 year life spans          | <b>→</b> | Shorter life spans and more frequent launches               |
| Designed for safety and<br>survivability | →        | Recognized need to detect cyber intrusion and isolate       |


## **Implications for Embedded Technology**



| Smaller satellites                               | <ul> <li>Reduced SWaP → less memory and multiple functions per processor</li> </ul> |
|--------------------------------------------------|-------------------------------------------------------------------------------------|
| Shorter life span                                | <ul> <li>Reduced cost → COTS hardware and software → supply chain risks</li> </ul>  |
| Higher number of satellites                      | • Can distribute NRE over larger group                                              |
| Rapid technology insertion                       | • Modular open system architecture,<br>including security architecture              |
| Need for cyber intrusion detection and isolation | <ul> <li>Can't punt on security requirements</li> </ul>                             |

## **Satellite Information Security Layers**





## **Example New Satellite: GPS III**





- GPS Mission Data Unit is 70% digital
- □ 3x more accurate
- □ 8x better anti-jam capability
- Design life of 15 years
- Compatible with L1C
   Global Navigation Satellite System (GNSS)
- "Designed to evolve to incorporate new technology and changing mission needs"



Do you agree or disagree with these statements?

- Most satellites in operation are older, long before software-defined architectures, making them less vulnerable to hacking. No, they have less security, making them easier to hack.
- If GPS satellites were compromised, it's not that big of a problem because we could get by using paper maps or digital map databases without real-time GPS input.
   No, GPS timing signals are critical for financial transactions, power grids, and more.
- Data sent to and from a satellite is secure because most satellites encrypt communications. Yes, most satellites fielded after 2008 use some encryption.
- If a hacker does get inside a satellite, then they can pretty much do what ever they want, from covertly altering the data to disabling the satellite.
   Yes, unless they use an NSA-level separation kernel like INTEGRITY-178 tuMP.